
domain, independent from space [i.e.,anti-Euclidean—bmd],
in which abstract general concepts of magnitudes, are investi-Pedagogy
gated as combinations of magnitudes connected by continu-
ity: a domain, which, at present, is poorly developed, and in
which one cannot move without the use of language borrowed
from spatial images.”

It is my intention to provide a summary sketch of theFundamental Theorem:
history of this idea, and Gauss’ development of it. It can not
be exhaustive. Rather it seeks to outline the steps whichGauss’s Declaration
should form the basis for oral pedagogical dialogues, already
under way in various locations.Of Independence
Multiply-Extended Magnitudeby Bruce Director

A physical concept of magnitude was already fully devel-
oped by circles associated with Plato, and expressed most

In September 1798, after three years of self-directed study, explicitly in theMeno, Theatetus,and Timaeusdialogues.
Plato and his circle demonstrated this concept, pedagogically,the great mathematician Carl Friedrich Gauss, then 21 years

old, left Göttingen University without a diploma. He returned through the paradoxes that arise when considering the unique-
ness of the five regular solids, and the related problems ofto his native city of Brunswick to begin the composition of

hisDisquisitiones Arithmeticae,and, lacking any prospect of doubling a line, square, and cube. As Plato emphasized, each
species of action generated a different species of magnitude.employment, hoped to continue receiving his student stipend.

After several months of living on credit, word came from He denoted such magnitudes by the Greek termdunamais,a
term akin to Leibniz’ use of the wordKraft, translated intothe Duke that the stipend would continue, provided Gauss

obtained his doctor of philosophy degree—a task Gauss English as “power.”
That is, a linear magnitude has the “power” to double athought a distraction, and wished to postpone.

Nevertheless, he took the opportunity to produce a virtual line, while only a magnitude of a different species has the
“power” to double the square, and a still different species hasdeclaration of independence from the stifling world of deduc-

tive mathematics, in the form of a written thesis submitted to the “power” to doubleacube(seeFigures 1a-1c). InBernhard
Riemann’s language, these magnitudes are called, respec-the faculty of the University of Helmstedt, on a new proof of

the fundamental theorem of algebra. Within months, he was tively: simply extended, doubly extended, and triply ex-
tended. Plato’s circle emphasized that magnitudes of lessergranted his doctorate without even having to appear for oral

examination. extension lacked the capacity to generate magnitudes of
higher extension, creating, conceptually, a succession ofDescribing his intention to his former classmate,

Wolfgang Bolyai, Gauss wrote, “The title [fundamental theo- “higher powers.”
Do not think here of the deductive use of the term “dimen-rem] indicates quite definitely the purpose of the essay; only

about a third of the whole, nevertheless, is used for this pur- sion.” While a perfectly good word, “dimension” in modern
usage too often is associated with the Kantian idea of formalpose; the remainder contains chiefly the history and a critique

of works on the same subject by other mathematicians (viz. Euclidean space, in which space is considered as a combina-
tion of three, independent, simply extended dimensions.d’Alembert, Bougainville, Euler, de Foncenex, Lagrange,

and the encyclopedists . . . which latter, however, will proba- Think, instead, of “physical extension.” A line is pro-
duced by a physical action of simple extension. A surfacebly not be much pleased), besides many and varied comments

on the shallowness which is so dominant in our present-day may be bounded by lines, but it is not made from lines; rather,
mathematics.”

In essence, Gauss was defending, and extending, a princi-
ple that goes back to Plato, in which only physical action, not
arbitrary assumptions, defines our notion of magnitude. Like
Plato, Gauss recognized it were insufficient to simply state
hisdiscovery, unless itwere combinedwitha polemicalattack
on the Aristotelean falsehoods that had become so popular
among his contemporaries.

Looking back on his dissertation 50 years later, Gauss
said, “The demonstration is presented using expressions bor-
rowed from the geometry of position; for in this way, the

FIGURE 1a

Doubling the Line
 

greatest acuity and simplicity is obtained. Fundamentally, theThe magnitude which has thepowerto double the length of a line
is produced by a simple extension of a line.essential content of the entire argument belongs to a higher
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FIGURE 1c

Doubling the Cube
 

1
2

1
2

√√( )2

√3 2
23

The magnitude which has thepower to produce a cube of double
volume, is different than the magnitude which has thepower to
double a square, or a line. It is the smaller of two geometric means
between the two cubes. This magnitude is incommensurable to
both those lower magnitudes, the square and the line.

FIGURE 1b

Doubling the Square

The magnitude which has thepower to produce a square of double
area, is the diagonal of the smaller square, and is called “the
geometric mean,” between the two squares. The magnitude of the
length of the diagonal is incommensurable with, and cannot be
produced by, the magnitude of the length of the side of the smaller
square.

a surface is irreducibly doubly extended. Similarly, a volume
may be bounded by surfaces, which in turn are bounded by
lines, but, it is irreducibly triply extended.

Thus, a unit line, square, or cube, may all be characterized
by the number One, but each One, is a species of a different
power.

Plato’s circle also emphasized, that this succession of
magnitudes of higher powers, was generated by a succession
of different types of action. Specifically, a simply extended
magnitude was produced from linear action, doubly ex-
tended magnitudes from circular action,and triply extended
magnitudes from extended circular action,such as the rota-
tional actions which produce a cone, cylinder, or torus. This
is presented, pedagogically, by Plato in the Menodialogue,
with respect to doubly extended magnitudes, and in the
Timaeus,with respect to the uniqueness of the five regular
solids, and the problem of doubling the cube. Plato’s collabo-

FIGURE 2

Archytus’ Construction To Double the Cube
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rator, Archytus, demonstrated that the magnitude with which
Archytus developed a construction to find two geometric meansa cube is doubled, is not generated by circular action, but
between two magnitudes. The longer magnitude is AC, which is thefrom extended circular action, i.e., conic sections (see Fig-
diameter of a circle. That circle is rotated around A to form a

ure 2 ). torus. A cylinder is then produced perpendicular to the torus,
It fell to Apollonius of Perga (262-200 B.C.) to present whose diameter is also AC. The shorter magnitude AB is drawn as

a full exposition of the generation of magnitudes of higher a chord of a cross section of the torus. AB is extended until it
intersects the cylinder, forming a triangle, which when rotated,
produces a cone. All three surfaces intersect at point P.

powers, in his work onConics.His approach was exhaustively
to investigate the generation of doubly and triply extended
magnitudes, which he distinguished into plane (circle/line)
and solid (ellipse, parabola, hyperbola) loci. Arabic word algebra;and, from Gottfried Wilhelm Leibniz

(1644-1716) on, as analysis.Here, the relationship of magni-As Abraham Gotthelf Kästner indicates in his History of
Mathematics(1797), the investigation of the relationships tudes of the second power (squares) and the third power

(cubes) were investigated in the form of quadratic and cubicamong higher powers, gave rise to what became known by the
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algebraic equations, respectively. Meanwhile, equations of
higher than the third degree took on a formal significance,
but lacked the physical connection which could be seen in
quadratics and cubics.

Girolamo Cardan (1501-1576), and later, Leibniz,
showed that there was a “hole” in all forms of algebraic equa-
tions, as indicated by the appearance of the square roots of
negative numbers, as solutions to such equations. Peering
into this “hole,” Leibniz recognized that algebra could teach
nothing about physics, but, that a general physical principle
underlay all algebraic equations, of whatever power.

Writing in about 1675 to Christiaan Huyghens (1629-
1695) on the square roots of negative numbers, Leibniz added
that he had invented a machine which produced exactly the
required action of this general physical principle:

“ It seems that after this instrument, there is almost nothing
more to be desired for the use which algebra can or will be
able to have in mechanics and in practice. It is believable that
this was the aim of the geometry of the ancients (at least that
of Apollonius) and the purpose of loci that he had introduced,

FIGURE 3

The Principle of Squaring
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because he had recognized that a few lines determine in-
The principle of “ squaring” involves doubling the angle ofstantly, what long calculations in numbers could achieve only
rotation and squaring the length. Angle β is double angle α andafter long work capable of discouraging the most firm.”
angle γ is double angle β. Also, the length of B is the square of AWhile finding the physical action that generated a succes-
and the length of C is the square of B.

sion of higher powers, Leibniz left open the question of what
physical action produced the square roots of negative
numbers.

equation can be solved by introducing the number 2 √−1, or
2i, which when squared, equals −4. But, the question remains,Gauss’s Proof of the Fundamental Theorem
what is the physical meaning of √−1?By the time Gauss left Göttingen, he had already devel-

One answer is to say that √−1 has no physical meaning,oped a concept of the physical reality of the square roots of
and thus the equation x2=−4 has no solution. To this, Eulernegative numbers, which he called, complex numbers. Adopt-
and Lagrange added the sophistry, richly ridiculed by Gaussing the method of Plato’s cave metaphor, from The Republic,
in his dissertation, that the equation x2=−4 has a solution, butGauss understood his complex numbers to be shadows re-
the solution is impossible!flecting a complex of physical actions (action acting on ac-

Gauss demonstrated the physical meaning of the√−1, nottion). This complex action reflected a power greater than the
in the visible domain of squares, but in the cognitive domain,triply extended action that characterizes the manifold of visi-
of the principle of squaring.ble space.

This can be illustrated pedagogically, by drawing a squareIt was Gauss’ unique contribution, to devise a metaphor,
whose area we’ ll call 1. Then draw the diagonal of that square,from which to represent these higher forms of physical action,
and draw a new square using that diagonal as a side. The areaso those actions could be represented, by their reflections, in
of the new square will be 2. Now, repeat this action, again tothe visible domain.
generate a square whose area is 4 (Figure 3).In his 1799 dissertation, Gauss brilliantly chose to de-

What is the principle of squaring so illustrated? The actionvelop his metaphor, polemically, on the most vulnerable flank
that generated the magnitude which produced the squareof his opponents’ algebraic equations. Like Leibniz, Gauss
whose area is 2, was a rotation of 45° and an extension ofrejected the deductive approach of investigating algebraic

equations on their own terms, insisting that it was physical length from 1 to the √2. To produce the square whose area is
4, that rotation of 45° was doubled to 90°, and the extensionaction that determined the characteristics of the equations.

A simple example will help illustrate the point. Think of was squared to become 2. Repeat this process several times,
to illustrate that the principle of squaring, can be thought ofthe physical meaning of the equation x2=4. Obviously, x refers

to a side of a square whose area is 4. Thus, 2 is a solution as the combined physical action, of doubling a rotation and
squaring the length. The square root is simply the reverseto this equation. Now, think of the physical meaning of the

equation x2=−4. From a formal deductive standpoint, this action. That is, halving the angle of rotation and decreasing
the length by the square root.equation refers to the side of a square whose area is −4. But,

how can a square have an area of −4? Formally, the second Now draw a circle and a diameter, and apply this physical
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FIGURE 4

Squaring A Complex Number
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FIGURE 5

Gauss’s Complex Domain
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The general principle of “ squaring” can be carried out on a
circle. z2 is produced from z by doubling the angle α and squaring
the distance from the center of the circle to z.

action ultimately refers to a physical singularity, such as the
lowest point of the catenary, or the poles of the rotating Earth,
or the center of the bar magnet.

In the above example, the original circle becomes a unitaction of squaring to every point on the circle. That is, take
circle in the complex domain. The center of the circle is theevery point on the circumference of the circle. Draw the radius
origin, denoted by 0, the ends of the diameter are denoted byconnecting that point to the center of the circle. That radius
1 and−1. The square root of−1 is found by halving the rotationmakes an angle with the diameter you drew. To “square” that
between 1 and −1, and reducing the radius by the square root.point, double the angle between the radius and the diameter,

and square the length. Repeat this action with several points. Think carefully, and you will see that √−1 and − √−1 are
represented by the points on the circumference which are half-Soon you will be able to see that the points on the first circle

all map to points on another concentric circle, whose radius way between 1 and −1 (Figure 5).
Gauss demonstrated that all algebraic powers, of any de-is the square of the original circle. But, it gets curiouser and

curiouser. Since you doubled the angle each time you squared gree, when projected onto his complex domain, could be rep-
resented by an action similar to that just demonstrated fora point, the original circle will map to the “squared” circle

twice (Figure 4)! squaring. For example, the action of cubing a complex num-
ber is accomplished by tripling the angle of rotation and cub-There is a physical example that illustrates this process.

Take a bar magnet and rotate a compass around the magnet. ing the length. This maps the original circle three times onto
a circle whose radius is the cube of the original circle. TheAs the compass moves from the North to the South pole of the

magnet (180°), the compass needle will make one complete action associated with the bi-quadratic power (fourth degree)
involves quadrupling the angle of rotation and squaring therevolution (360°). As it moves from the South pole back to

the North, the needle will make another complete revolution. square of the length. This will map the original circle four
times onto a circle whose radius is increased by the square ofIn effect, the bar magnet “squares” the compass!

Gauss associated his complex numbers with this type of the square, and so forth for the all higher powers.
Thus, even though the manifolds of action associated withcompound physical action (rotation combined with exten-

sion). He made them visible, metaphorically, as spiral action these higher powers exist outside the triply extended manifold
of visible space, the characteristic of action which producedprojected onto a surface. Every point on that surface repre-

sents a complex number. Each number denotes a unique com- them, was brought into view, by Gauss, in his complex
domain.bination of rotation and extension. The point of origin of the
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